Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  1. Filtro do ramo de atividade 4:
    Filtra-se a coluna descricao_atividade4 para trazer apenas os valores: OPERACIONAL, ADMINISTRATIVO e TECNICO

  2. Filtro de colaboradores que possuem horas previstas maior que 0:
    Filtra-se a coluna hrs_prev para trazer apenas os colaboradores que naquele mês de referência possuem horas previstas maior que 0, evitando-se assim de computar como absenteísta colaboradores que não batem ponto, que estejam de férias (e portanto sem horas previstas) entre outros casos similares.

  3. Criação das variáveis de interesse de absenteísmo e horas extras por horas previstas:

    • faltas_injust-hrs_prev = divisão das colunas faltas_injust/hrs_prev

    • falta_abon-hrs_prev = divisão das colunas falta_abon/hrs_prev

    • faltas_just-hrs_prev = divisão das colunas faltas_just/hrs_prev

    • faltas_legais-hrs_prev = divisão das colunas faltas_legais/hrs_prev

    • atestados-hrs_prev = divisão das colunas atestados/hrs_prev

    • afastamentos-hrs_prev = divisão das colunas afastamentos/hrs_prev

    • faltas_sem_afast-hrs_prev = divisão das colunas faltas_sem_afast/hrs_prev

    • total_horas_extras-hrs_prev = divisão das colunas total_horas_extras/hrs_prev

    • he_folgas-hrs_prev = divisão das colunas he_folgas/hrs_prev

  4. Ajuste e tratamento da variável de ‘local físico':

    A variável de local físico continha valores que traziam um código numérico seguido do local propriamente dito, como por exemplo 0006 - FÁB METAIS SP CML. Tratou-se dessa variável para retirar o código numérico e o restante fosse transferido para uma coluna nova chamada divisao.

    Assim, no exemplo 0006 - FÁB METAIS SP CML, o código 0006 era jogado fora e ‘FÁB METAIS SP CML’ era transferido para essa nova coluna 'divisão’.

  5. Criação da coluna grupo_divisao:

    A partir dos valores da coluna divisao cria-se a hierarquia acima, o grupo_divisao. Os valores usados foram:

    • HYDRA ARACAJU → Louças

    • FÁB LOUÇAS JUNDIAÍ I → Louças

    • FÁB LOUÇAS RECIFE → Louças

    • FÁB METAIS SP INDL → Metais

    • FÁB METAIS JUNDIAÍ → Metais

    • FÁB AGUDOS → Madeira

    • FÁB LOUÇAS QUEIMADOS → Louças

    • FÁB LOUÇAS PARAÍBA → Louças

    • FÁB ITAPETININGA → Madeira

    • FÁB UBERABA → Madeira

    • FÁB METAIS SP CML → Metais

    • FÁB TAQUARI → Madeira

    • FL UBERABA → Duraflora

    • FL AGUDOS → Duraflora

    • FL ITAPETININGA → Duraflora

    • FL LENÇÓIS PAULISTA → Duraflora

    • FL ESTRELA DO SUL → Madeira

    • FÁB METAIS JACAREÍ → Metais

    • FÁB LOUÇAS SUL → Louças

    • FL BOTUCATU → Duraflora

    • FÁB HYDRA SÃO PAULO → Louças

    • CD TUBARAO → Outros

    • HYDRA TUBARÃO → Louças

    • FÁB LOUÇAS JUNDIAÍ → Louças

    • FÁB LOUÇAS JUNDIAÍ II → Louças

    • FÁB BOTUCATU → Madeira

    • FL PIRATININGA → Madeira

    • FÁB METAIS SP → Metais

    • CD RECIFE → Madeira

    • FL TAQUARI → Duraflora

    • CD BETIM → Outros

      Os grupos_divisao resultants foram: Metais, Louças, Duraflora, Madeira e Outros.

      Esses tratamentos e a criação dessas novas colunas foram colocados na tabela absenteimo_prep.metas_teste_estatistico__prepared, sendo esta a tabela a ser usada no modelo propriamente dito.

Criação

...

do modelo

O modelo foi criado em três etapas:

  1. Geral -> grupo divisão:
    Workspace/people-analytics-absenteismo/02__modelos/metas_teste_estatístico/teste_geral-grupo_divisao.py

  2. Grupo divisão -> divisão:
    Workspace/people-analytics-absenteismo/02__modelos/metas_teste_estatístico/teste_grupo_divisao-divisao.py

  3. Divisão -> centro de custo:
    Workspace/people-analytics-absenteismo/02__modelos/metas_teste_estatístico/teste_divisao_

...

  1. centro-custo.py

    Entrada:

absenteimo_prep.df__stat_test_prepared

Saídas:

absenteimo_prep.sapdf__test__absenteismogeral_grupo_dbdivisao
absenteimo_prep.sapdf__test__grupo_informacoesdivisao_cadastraisdivisao

Saída:

absenteimo_prep.propensaodf__test_absenteismo_divisao_absenteismo_lagscentro_custo
Ao final, todas as saídas serão unificadas em uma única tabela a ser usada no dashboard.

Nesse passo são criadas as variáveis de atraso para fazer os cálculos de recorrência colocando os dados no formato long. Como saída é criada a tabela absenteimo_prep.propensao_absenteismo__absenteismo_lags com o seguinte formato:

...